Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Front Microbiol ; 14: 1057608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846794

RESUMO

The acquisition of bla OXA genes encoding different carbapenem-hydrolyzing class-D ß-lactamases (CHDL) represents a main determinant of carbapenem resistance in the nosocomial pathogen Acinetobacter baumannii. The blaOXA-58 gene, in particular, is generally embedded in similar resistance modules (RM) carried by plasmids unique to the Acinetobacter genus lacking self-transferability. The ample variations in the immediate genomic contexts in which blaOXA-58 -containing RMs are inserted among these plasmids, and the almost invariable presence at their borders of non-identical 28-bp sequences potentially recognized by the host XerC and XerD tyrosine recombinases (pXerC/D-like sites), suggested an involvement of these sites in the lateral mobilization of the gene structures they encircle. However, whether and how these pXerC/D sites participate in this process is only beginning to be understood. Here, we used a series of experimental approaches to analyze the contribution of pXerC/D-mediated site-specific recombination to the generation of structural diversity between resistance plasmids carrying pXerC/D-bounded bla OXA-58- and TnaphA6-containing RM harbored by two phylogenetically- and epidemiologically-closely related A. baumannii strains of our collection, Ab242 and Ab825, during adaptation to the hospital environment. Our analysis disclosed the existence of different bona fide pairs of recombinationally-active pXerC/D sites in these plasmids, some mediating reversible intramolecular inversions and others reversible plasmid fusions/resolutions. All of the identified recombinationally-active pairs shared identical GGTGTA sequences at the cr spacer separating the XerC- and XerD-binding regions. The fusion of two Ab825 plasmids mediated by a pair of recombinationally-active pXerC/D sites displaying sequence differences at the cr spacer could be inferred on the basis of sequence comparison analysis, but no evidence of reversibility could be obtained in this case. The reversible plasmid genome rearrangements mediated by recombinationally-active pairs of pXerC/D sites reported here probably represents an ancient mechanism of generating structural diversity in the Acinetobacter plasmid pool. This recursive process could facilitate a rapid adaptation of an eventual bacterial host to changing environments, and has certainly contributed to the evolution of Acinetobacter plasmids and the capture and dissemination of bla OXA-58 genes among Acinetobacter and non-Acinetobacter populations co-residing in the hospital niche.

2.
Infect Genet Evol ; 96: 105131, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748986

RESUMO

The Pseudomonas putida group (P. putida G) is composed of at least 21 species associated with a wide range of environments, including the clinical setting. Here, we characterized 13 carbapenem-resistant P. putida G clinical isolates bearing class 1 integrons/transposons (class 1 In/Tn) carrying blaVIM-2 metallo-ß-lactamase gene cassettes obtained from hospitals of Argentina. Multilocus sequencing (MLSA) and phylogenetic analyses based on 16S rDNA, gyrB and rpoD sequences distinguished 7 species among them. blaVIM-2 was found in three different cassette arrays: In41 (blaVIM-2-aacA4), In899 (only blaVIM-2), and In528 (dfrB1-aacA4-blaVIM-2). In41 and In899 were associated with complete tniABQC transposition modules and IRi/IRt boundaries characteristic of the Tn5053/Tn402 transposons, which were designated Tn6335 and Tn6336, respectively. The class 1 In/Tn element carrying In528, however, exhibited a defective tni module bearing only the tniC (transposase) gene, associated with a complete IS6100 bounded with two oppositely-oriented IRt end regions. In some P. putida G isolates including P. asiatica, P. juntendi, P. putida G/II, and P. putida G/V, Tn6335/Tn6336 were carried by pLD209-type conjugative plasmids capable of self-mobilization to P. aeruginosa or Escherichia coli. In other isolates of P. asiatica, P. putida G/II, and P. monteiliieilii, however, these blaVIM-2-containing class 1 In/Tn elements were found inserted into the res regions preceding the tnpR (resolvase) gene of particular Tn21 subgroup members of Tn3 transposons. The overall results reinforce the notion of P. putida G members as blaVIM-2 reservoirs, and shed light on the mechanisms of dissemination of carbapenem resistance genes to other pathogenic bacteria in the clinical setting.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana/genética , Pseudomonas putida/genética , beta-Lactamases/genética , Elementos de DNA Transponíveis/genética , Integrons/genética , Pseudomonas putida/efeitos dos fármacos
3.
Virulence ; 11(1): 1727-1737, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33300460

RESUMO

Novel approaches to treat carbapenem-resistant Acinetobacter baumannii (CRAB) infections are urgently needed and anti-virulence drugs represent promising alternatives, but our knowledge on potential targets is scarce. We searched for potential A. baumannii virulence factors by whole-genome sequencing-based comparisons of CRAB clinical isolates causing bloodstream infections secondary to ventilator-associated pneumonia from demographics and clinically homogeneous patients, who received optimal treatment but with different clinical outcomes. Thus, the carO gene was interrupted in CRAB isolates from surviving patients, while it was intact in isolates from non-surviving patients, and proteomic/immunoblot techniques corroborated it. When the virulence role of A. baumannii CarO was analyzed in model systems, isogenic ΔcarO mutants and a CRAB clinical isolate with truncated CarO, showed lower ability to adhere and invade A549 cells and in vivo virulence. This unnoticed virulence role for CarO postulate this A. baumannii outer membrane protein as a potential target for new therapies against CRAB infections.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Porinas/genética , Porinas/metabolismo , Células A549 , Infecções por Acinetobacter/sangue , Acinetobacter baumannii/efeitos dos fármacos , Adulto , Idoso , Animais , Antibacterianos/farmacologia , Aderência Bacteriana , Feminino , Genoma Bacteriano , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Proteômica , Virulência , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
4.
mSphere ; 5(4)2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727858

RESUMO

Acinetobacter baumannii represents nowadays an important nosocomial pathogen of poorly defined reservoirs outside the clinical setting. Here, we conducted whole-genome sequencing analysis of the Acinetobacter sp. NCIMB8209 collection strain, isolated in 1943 from the aerobic degradation (retting) of desert guayule shrubs. Strain NCIMB8209 contained a 3.75-Mb chromosome and a plasmid of 134 kb. Phylogenetic analysis based on core genes indicated NCIMB8209 affiliation to A. baumannii, a result supported by the identification of a chromosomal blaOXA-51-like gene. Seven genomic islands lacking antimicrobial resistance determinants, 5 regions encompassing phage-related genes, and notably, 93 insertion sequences (IS) were found in this genome. NCIMB8209 harbors most genes linked to persistence and virulence described in contemporary A. baumannii clinical strains, but many of the genes encoding components of surface structures are interrupted by IS. Moreover, defense genetic islands against biological aggressors such as type 6 secretion systems or CRISPR-cas are absent from this genome. These findings correlate with a low capacity of NCIMB8209 to form biofilm and pellicle, low motility on semisolid medium, and low virulence toward Galleria mellonella and Caenorhabditis elegans Searching for catabolic genes and concomitant metabolic assays revealed the ability of NCIMB8209 to grow on a wide range of substances produced by plants, including aromatic acids and defense compounds against external aggressors. All the above features strongly suggest that NCIMB8209 has evolved specific adaptive features to a particular environmental niche. Moreover, they also revealed that the remarkable genetic plasticity identified in contemporary A. baumannii clinical strains represents an intrinsic characteristic of the species.IMPORTANCEAcinetobacter baumannii is an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) opportunistic pathogen, with poorly defined natural habitats/reservoirs outside the clinical setting. A. baumannii arose from the Acinetobacter calcoaceticus-A. baumannii complex as the result of a population bottleneck, followed by a recent population expansion from a few clinically relevant clones endowed with an arsenal of resistance and virulence genes. Still, the identification of virulence traits and the evolutionary paths leading to a pathogenic lifestyle has remained elusive, and thus, the study of nonclinical ("environmental") A. baumannii isolates is necessary. We conducted here comparative genomic and virulence studies on A. baumannii NCMBI8209 isolated in 1943 from the microbiota responsible for the decomposition of guayule, and therefore well differentiated both temporally and epidemiologically from the multidrug-resistant strains that are predominant nowadays. Our work provides insights on the adaptive strategies used by A. baumannii to escape from host defenses and may help the adoption of measures aimed to limit its further dissemination.


Assuntos
Acinetobacter baumannii/genética , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos/genética , Ilhas Genômicas , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Microbiologia Ambiental , Variação Genética , Genômica , Filogenia , Plantas/microbiologia , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
5.
Microb Genom ; 6(6)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32496178

RESUMO

Acinetobacter baumannii is nowadays a relevant nosocomial pathogen characterized by multidrug resistance (MDR) and concomitant difficulties to treat infections. OmpA is the most abundant A. baumannii outer membrane (OM) protein, and is involved in virulence, host-cell recognition, biofilm formation, regulation of OM stability, permeability and antibiotic resistance. OmpA members are two-domain proteins with an N-terminal eight-stranded ß-barrel domain with four external loops (ELs) interacting with the environment, and a C-terminal periplasmic domain binding non-covalently to the peptidoglycan. Here, we combined data from genome sequencing, phylogenetic and multilocus sequence analyses from 975 strains/isolates of the Acinetobacter calcoaceticus/Acinetobacter baumannii complex (ACB), 946 from A. baumannii, to explore ompA microevolutionary divergence. Five major ompA variant groups were identified (V1 to V5) in A. baumannii, encompassing 52 different alleles coding for 23 different proteins. Polymorphisms were concentrated in five regions corresponding to the four ELs and the C-terminal end, and provided evidence for intra-genic recombination. ompA variants were not randomly distributed across the A. baumannii phylogeny, with the most frequent V1(lct)a1 allele found in most clonal complex 2 (CC2) strains and the second most frequent V2(lct)a1 allele in the majority of CC1 strains. Evidence was found for assortative exchanges of ompA alleles not only between separate A. baumannii lineages, but also different ACB species. The overall results have implications for A. baumannii evolution, epidemiology, virulence and vaccine design.


Assuntos
Acinetobacter baumannii/classificação , Proteínas da Membrana Bacteriana Externa/genética , Variação Genética , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Bases de Dados Genéticas , Evolução Molecular , Tipagem de Sequências Multilocus , Filogenia , Sequenciamento Completo do Genoma
6.
Microb Genom ; 6(9)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32213259

RESUMO

Acinetobacter baumannii (Aba) is an emerging opportunistic pathogen associated to nosocomial infections. The rapid increase in multidrug resistance (MDR) among Aba strains underscores the urgency of understanding how this pathogen evolves in the clinical environment. We conducted here a whole-genome sequence comparative analysis of three phylogenetically and epidemiologically related MDR Aba strains from Argentinean hospitals, assigned to the CC104O/CC15P clonal complex. While the Ab244 strain was carbapenem-susceptible, Ab242 and Ab825, isolated after the introduction of carbapenem therapy, displayed resistance to these last resource ß-lactams. We found a high chromosomal synteny among the three strains, but significant differences at their accessory genomes. Most importantly, carbapenem resistance in Ab242 and Ab825 was attributed to the acquisition of a Rep_3 family plasmid carrying a blaOXA-58 gene. Other differences involved a genomic island carrying resistance to toxic compounds and a Tn10 element exclusive to Ab244 and Ab825, respectively. Also remarkably, 44 insertion sequences (ISs) were uncovered in Ab825, in contrast with the 14 and 11 detected in Ab242 and Ab244, respectively. Moreover, Ab825 showed a higher killing capacity as compared to the other two strains in the Galleria mellonella infection model. A search for virulence and persistence determinants indicated the loss or IS-mediated interruption of genes encoding many surface-exposed macromolecules in Ab825, suggesting that these events are responsible for its higher relative virulence. The comparative genomic analyses of the CC104O/CC15P strains conducted here revealed the contribution of acquired mobile genetic elements such as ISs and plasmids to the adaptation of A. baumannii to the clinical setting.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/classificação , Farmacorresistência Bacteriana , Plasmídeos/genética , Sequenciamento Completo do Genoma/métodos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Adaptação Fisiológica , Aminoglicosídeos/farmacologia , Animais , Argentina , Composição de Bases , Carbenicilina/farmacologia , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Genômica , Humanos , Filogenia , Sintenia
7.
PLoS One ; 14(11): e0220584, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31743332

RESUMO

Acinetobacter bereziniae is an environmental microorganism with increasing clinical incidence, and may thus provide a model for a bacterial species bridging the gap between the environment and the clinical setting. A. bereziniae plasmids have been poorly studied, and their characterization could offer clues on the causes underlying the leap between these two different habitats. Here we characterized the whole plasmid content of A. bereziniae HPC229, a clinical strain previously reported to harbor a 44-kbp plasmid, pNDM229, conferring carbapenem and aminoglycoside resistance. We identified five extra plasmids in HPC229 ranging from 114 to 1.3 kbp, including pAbe229-114 (114 kbp) encoding a MOBP111 relaxase and carrying heavy metal resistance, a bacteriophage defense BREX system and four different toxin-antitoxin (TA) systems. Two other replicons, pAbe229-15 (15.4 kbp) and pAbe229-9 (9.1 kbp), both encoding MOBQ1 relaxases and also carrying TA systems, were found. The three latter plasmids contained Acinetobacter Rep_3 superfamily replication initiator protein genes, and functional analysis of their transfer regions revealed the mobilizable nature of them. HPC229 also harbors two smaller plasmids, pAbe229-4 (4.4 kbp) and pAbe229-1 (1.3 kbp), the former bearing a ColE1-type replicon and a TA system, and the latter lacking known replication functions. Comparative sequence analyses against deposited Acinetobacter genomes indicated that the above five HPC229 plasmids were unique, although some regions were also present in other of these genomes. The transfer, replication, and adaptive modules in pAbe229-15, and the stability module in pAbe229-9, were bordered by sites potentially recognized by XerC/XerD site-specific tyrosine recombinases, thus suggesting a potential mechanism for their acquisition. The presence of Rep_3 and ColE1-based replication modules, different mob genes, distinct adaptive functions including resistance to heavy metal and other environmental stressors, as well as antimicrobial resistance genes, and a high content of XerC/XerD sites among HPC229 plasmids provide evidence of substantial links with bacterial species derived from both environmental and clinical habitats.


Assuntos
Acinetobacter/genética , Plasmídeos , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/microbiologia , Proteínas de Bactérias/genética , Biologia Computacional , DNA Bacteriano , Feminino , Genoma Bacteriano , Humanos , Pessoa de Meia-Idade , Filogenia , Homologia de Sequência
8.
Sci Rep ; 8(1): 15509, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341391

RESUMO

ADP-glucose is the precursor of glycogen biosynthesis in bacteria, and a compound abundant in the starchy plant organs ingested by many mammals. Here we show that the enteric species Escherichia coli is capable of scavenging exogenous ADP-glucose for use as a glycosyl donor in glycogen biosynthesis and feed the adenine nucleotide pool. To unravel the molecular mechanisms involved in this process, we screened the E. coli single-gene deletion mutants of the Keio collection for glycogen content in ADP-glucose-containing culture medium. In comparison to wild-type (WT) cells, individual ∆nupC and ∆nupG mutants lacking the cAMP/CRP responsive inner-membrane nucleoside transporters NupC and NupG displayed reduced glycogen contents and slow ADP-glucose incorporation. In concordance, ∆cya and ∆crp mutants accumulated low levels of glycogen and slowly incorporated ADP-glucose. Two-thirds of the glycogen-excess mutants identified during screening lacked functions that underlie envelope biogenesis and integrity, including the RpoE specific RseA anti-sigma factor. These mutants exhibited higher ADP-glucose uptake than WT cells. The incorporation of either ∆crp, ∆nupG or ∆nupC null alleles sharply reduced the ADP-glucose incorporation and glycogen content initially witnessed in ∆rseA cells. Overall, the data showed that E. coli incorporates extracellular ADP-glucose through a cAMP/CRP-regulated process involving the NupC and NupG nucleoside transporters that is facilitated under envelope stress conditions.


Assuntos
Adenosina Difosfato Glucose/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Espaço Extracelular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Nucleotídeos de Adenina/metabolismo , Transporte Biológico , Escherichia coli/genética , Genes Bacterianos , Glicogênio/biossíntese , Glicogênio Sintase/metabolismo , Modelos Biológicos , Estresse Fisiológico
9.
Front Microbiol ; 9: 66, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29434581

RESUMO

Members of the genus Acinetobacter possess distinct plasmid types which provide effective platforms for the acquisition, evolution, and dissemination of antimicrobial resistance structures. Many plasmid-borne resistance structures are bordered by short DNA sequences providing potential recognition sites for the host XerC and XerD site-specific tyrosine recombinases (XerC/D-like sites). However, whether these sites are active in recombination and how they assist the mobilization of associated resistance structures is still poorly understood. Here we characterized the plasmids carried by Acinetobacter baumannii Ab242, a multidrug-resistant clinical strain belonging to the ST104 (Oxford scheme) which produces an OXA-58 carbapenem-hydrolyzing class-D ß-lactamase (CHDL). Plasmid sequencing and characterization of replication, stability, and adaptive modules revealed the presence in Ab242 of three novel plasmids lacking self-transferability functions which were designated pAb242_9, pAb242_12, and pAb242_25, respectively. Among them, only pAb242_25 was found to carry an adaptive module encompassing an ISAba825-blaOXA-58 arrangement accompanied by a TnaphA6 transposon, the whole structure conferring simultaneous resistance to carbapenems and aminoglycosides. Ab242 plasmids harbor several XerC/D-like sites, with most sites found in pAb242_25 located in the vicinity or within the adaptive module described above. Electrotransformation of susceptible A. nosocomialis cells with Ab242 plasmids followed by imipenem selection indicated that the transforming plasmid form was a co-integrate resulting from the fusion of pAb242_25 and pAb242_12. Further characterization by cloning and sequencing studies indicated that a XerC/D site in pAb242_25 and another in pAb242_12 provided the active sister pair for the inter-molecular site-specific recombination reaction mediating the fusion of these two plasmids. Moreover, the resulting co-integrate was found also to undergo intra-molecular resolution at the new pair of XerC/D sites generated during fusion thus regenerating the original pAb242_25 and pAb242_12 plasmids. These observations provide the first evidence indicating that XerC/D-like sites in A. baumannii plasmids can provide active pairs for site-specific recombination mediating inter-molecular fusions and intra-molecular resolutions. The overall results shed light on the evolutionary dynamics of A. baumannii plasmids and the underlying mechanisms of dissemination of genetic structures responsible for carbapenem and other antibiotics resistance among the Acinetobacter clinical population.

10.
Genome Biol Evol ; 9(9): 2292-2307, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934377

RESUMO

Acinetobacter baumannii represents nowadays an important nosocomial opportunistic pathogen whose reservoirs outside the clinical setting are obscure. Here, we traced the origins of the collection strain A. baumannii DSM30011 to an isolate first reported in 1944, obtained from the enriched microbiota responsible of the aerobic decomposition of the resinous desert shrub guayule. Whole-genome sequencing and phylogenetic analysis based on core genes confirmed DSM30011 affiliation to A. baumannii. Comparative studies with 32 complete A. baumannii genomes revealed the presence of 12 unique accessory chromosomal regions in DSM30011 including five encompassing phage-related genes, five containing toxin genes of the type-6 secretion system, and one with an atypical CRISPRs/cas cluster. No antimicrobial resistance islands were identified in DSM30011 agreeing with a general antimicrobial susceptibility phenotype including folate synthesis inhibitors. The marginal ampicillin resistance of DSM30011 most likely derived from chromosomal ADC-type ampC and blaOXA-51-type genes. Searching for catabolic pathways genes revealed several clusters involved in the degradation of plant defenses including woody tissues and a previously unreported atu locus responsible of aliphatic terpenes degradation, thus suggesting that resinous plants may provide an effective niche for this organism. DSM30011 also harbored most genes and regulatory mechanisms linked to persistence and virulence in pathogenic Acinetobacter species. This strain thus revealed important clues into the genomic diversity, virulence potential, and niche ranges of the preantibiotic era A. baumannii population, and may provide an useful tool for our understanding of the processes that led to the recent evolution of this species toward an opportunistic pathogen of humans.


Assuntos
Acinetobacter baumannii/genética , Asteraceae/microbiologia , Variação Genética , Genoma Bacteriano , Virulência , Acinetobacter baumannii/patogenicidade , Antibacterianos , Genes Bacterianos , Genômica , Filogenia , Fatores de Virulência/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-28069648

RESUMO

The number and type of outer membrane (OM) channels responsible for carbapenem uptake in Acinetobacter are still not well defined. Here, we addressed these questions by using Acinetobacter baylyi as a model species and a combination of methodologies aimed to characterize OM channels in their original membrane environment. Kinetic and competition analyses of imipenem (IPM) uptake by A. baylyi whole cells allowed us to identify different carbapenem-specific OM uptake sites. Comparative analyses of IPM uptake by A. baylyi wild-type (WT) cells and ΔcarO mutants lacking CarO indicated that this OM protein provided a carbapenem uptake site displaying saturable kinetics and common binding sites for basic amino acids compatible with a specific channel. The kinetic analysis uncovered another carbapenem-specific channel displaying a somewhat lower affinity for IPM than that of CarO and, in addition, common binding sites for basic amino acids as determined by competition studies. The use of A. baylyi gene deletion mutants lacking OM proteins proposed to function in carbapenem uptake in Acinetobacter baumannii indicated that CarO and OprD/OccAB1 mutants displayed low but consistent reductions in susceptibility to different carbapenems, including IPM, meropenem, and ertapenem. These two mutants also showed impaired growth on l-Arg but not on other carbon sources, further supporting a role of CarO and OprD/OccAB1 in basic amino acid and carbapenem uptake. A multiple-carbapenem-channel scenario may provide clues to our understanding of the contribution of OM channel loss or mutation to the carbapenem-resistant phenotype evolved by pathogenic members of the Acinetobacter genus.


Assuntos
Acinetobacter/metabolismo , Aminoácidos Básicos/metabolismo , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Imipenem/metabolismo , Porinas/deficiência , Acinetobacter/genética , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico , Membrana Celular/química , Membrana Celular/metabolismo , Ertapenem , Evolução Molecular , Deleção de Genes , Expressão Gênica , Cinética , Meropeném , Porinas/genética , Tienamicinas/metabolismo , beta-Lactamas/metabolismo
12.
Antimicrob Agents Chemother ; 60(10): 6013-22, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458232

RESUMO

Metallo-beta-lactamases (MBLs) are broad-spectrum, Zn(II)-dependent lactamases able to confer resistance to virtually every ß-lactam antibiotic currently available. The large diversity of active-site structures and metal content among MBLs from different sources has limited the design of a pan-MBL inhibitor. GOB-18 is a divergent MBL from subclass B3 that is expressed by the opportunistic Gram-negative pathogen Elizabethkingia meningoseptica This MBL is atypical, since several residues conserved in B3 enzymes (such as a metal ligand His) are substituted in GOB enzymes. Here, we report the crystal structure of the periplasmic di-Zn(II) form of GOB-18. This enzyme displays a unique active-site structure, with residue Gln116 coordinating the Zn1 ion through its terminal amide moiety, replacing a ubiquitous His residue. This situation contrasts with that of B2 MBLs, where an equivalent His116Asn substitution leads to a di-Zn(II) inactive species. Instead, both the mono- and di-Zn(II) forms of GOB-18 are active against penicillins, cephalosporins, and carbapenems. In silico docking and molecular dynamics simulations indicate that residue Met221 is not involved in substrate binding, in contrast to Ser221, which otherwise is conserved in most B3 enzymes. These distinctive features are conserved in recently reported GOB orthologues in environmental bacteria. These findings provide valuable information for inhibitor design and also posit that GOB enzymes have alternative functions.


Assuntos
Farmacorresistência Bacteriana Múltipla , Flavobacteriaceae/enzimologia , Glutamina/química , Histidina/química , Zinco/química , beta-Lactamases/química , Antibacterianos/química , Antibacterianos/metabolismo , Carbapenêmicos/química , Carbapenêmicos/metabolismo , Domínio Catalítico , Cátions Bivalentes , Cefalosporinas/química , Cefalosporinas/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Flavobacteriaceae/química , Expressão Gênica , Glutamina/metabolismo , Histidina/metabolismo , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Penicilinas/química , Penicilinas/metabolismo , Periplasma/química , Periplasma/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , beta-Lactamases/genética , beta-Lactamases/metabolismo
13.
Genome Announc ; 4(2)2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26966220

RESUMO

We report here the draft genome sequence of an NDM-1-producing Acinetobacter bereziniae clinical strain, HPC229. This strain harbors both plasmid and chromosomal resistance determinants toward different ß-lactams and aminoglycosides as well as several types of multidrug efflux pumps, most likely representing an adaptation strategy for survival under different environments.

14.
PLoS One ; 10(9): e0138265, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26401654

RESUMO

Gram-negative bacteria, such as Acinetobacter baumannii, are an increasing burden in hospitals worldwide with an alarming spread of multi-drug resistant (MDR) strains. Herein, we compared a type strain (ATCC17978), a non-clinical isolate (DSM30011) and MDR strains of A. baumannii implicated in hospital outbreaks (Ab242, Ab244 and Ab825), revealing distinct patterns of type VI secretion system (T6SS) functionality. The T6SS genomic locus is present and was actively transcribed in all of the above strains. However, only the A. baumannii DSM30011 strain was capable of killing Escherichia coli in a T6SS-dependent manner, unlike the clinical isolates, which failed to display an active T6SS in vitro. In addition, DSM30011 was able to outcompete ATCC17978 as well as Pseudomonas aeruginosa and Klebsiella pneumoniae, bacterial pathogens relevant in mixed nosocomial infections. Finally, we found that the T6SS of DSM30011 is required for host colonization of the model organism Galleria mellonella suggesting that this system could play an important role in A. baumannii virulence in a strain-specific manner.


Assuntos
Acinetobacter baumannii/fisiologia , Acinetobacter baumannii/patogenicidade , Sistemas de Secreção Tipo VI/genética , Infecções por Acinetobacter/microbiologia , Animais , Biofilmes , Biomassa , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Teste de Complementação Genética , Loci Gênicos , Humanos , Interações Microbianas , Dados de Sequência Molecular , Mariposas/microbiologia , Mutação , Fenótipo , Virulência/genética
16.
PLoS One ; 10(1): e0115516, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25607991

RESUMO

Production of branched α-glucan, glycogen-like polymers is widely spread in the Bacteria domain. The glycogen pathway of synthesis and degradation has been fairly well characterized in the model enterobacterial species Escherichia coli (order Enterobacteriales, class Gammaproteobacteria), in which the cognate genes (branching enzyme glgB, debranching enzyme glgX, ADP-glucose pyrophosphorylase glgC, glycogen synthase glgA, and glycogen phosphorylase glgP) are clustered in a glgBXCAP operon arrangement. However, the evolutionary origin of this particular arrangement and of its constituent genes is unknown. Here, by using 265 complete gammaproteobacterial genomes we have carried out a comparative analysis of the presence, copy number and arrangement of glg genes in all lineages of the Gammaproteobacteria. These analyses revealed large variations in glg gene presence, copy number and arrangements among different gammaproteobacterial lineages. However, the glgBXCAP arrangement was remarkably conserved in all glg-possessing species of the orders Enterobacteriales and Pasteurellales (the E/P group). Subsequent phylogenetic analyses of glg genes present in the Gammaproteobacteria and in other main bacterial groups indicated that glg genes have undergone a complex evolutionary history in which horizontal gene transfer may have played an important role. These analyses also revealed that the E/P glgBXCAP genes (a) share a common evolutionary origin, (b) were vertically transmitted within the E/P group, and (c) are closely related to glg genes of some phylogenetically distant betaproteobacterial species. The overall data allowed tracing the origin of the E. coli glgBXCAP operon to the last common ancestor of the E/P group, and also to uncover a likely glgBXCAP transfer event from the E/P group to particular lineages of the Betaproteobacteria.


Assuntos
Escherichia coli/genética , Evolução Molecular , Glicogênio/genética , Óperon , Pasteurellaceae/genética , Filogenia
17.
PLoS One ; 9(9): e106938, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25188023

RESUMO

In Escherichia coli, ppGpp is a major determinant of growth and glycogen accumulation. Levels of this signaling nucleotide are controlled by the balanced activities of the ppGpp RelA synthetase and the dual-function hydrolase/synthetase SpoT. Here we report the construction of spoT null (ΔspoT) mutants obtained by transducing a ΔspoT allele from ΔrelAΔspoT double mutants into relA+ cells. Iodine staining of randomly selected transductants cultured on a rich complex medium revealed differences in glycogen content among them. Sequence and biochemical analyses of 8 ΔspoT clones displaying glycogen-deficient phenotypes revealed different inactivating mutations in relA and no detectable ppGpp when cells were cultured on a rich complex medium. Remarkably, although the co-existence of ΔspoT with relA proficient alleles has generally been considered synthetically lethal, we found that 11 ΔspoT clones displaying high glycogen phenotypes possessed relA mutant alleles with non-inactivating mutations that encoded stable RelA proteins and ppGpp contents reaching 45-85% of those of wild type cells. None of the ΔspoT clones, however, could grow on M9-glucose minimal medium. Both Sanger sequencing of specific genes and high-throughput genome sequencing of the ΔspoT clones revealed that suppressor mutations were restricted to the relA locus. The overall results (a) defined in around 4 nmoles ppGpp/g dry weight the threshold cellular levels that suffice to trigger net glycogen accumulation, (b) showed that mutations in relA, but not necessarily inactivating mutations, can be selected to compensate total SpoT function(s) loss, and (c) provided useful tools for studies of the in vivo regulation of E. coli RelA ppGpp synthetase.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glicogênio/genética , Ligases/genética , Pirofosfatases/genética , Supressão Genética , Alelos , Sequência de Aminoácidos , Células Clonais , Escherichia coli/metabolismo , Loci Gênicos , Genótipo , Glicogênio/metabolismo , Ligases/deficiência , Dados de Sequência Molecular , Fenótipo , Pirofosfatases/deficiência , Alinhamento de Sequência , Transdução Genética
18.
FEMS Microbiol Lett ; 352(2): 238-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24444297

RESUMO

The OmpW family consists of a ubiquitous group of small outer membrane (OM) ß-barrel proteins of Gram-negative bacteria with proposed roles in environmental adaptation but poorly understood mechanisms of expression. We report here that Escherichia coli K-12 OmpW contents are drastically modified by temperature changes compatible with the leap from the environment to warm-blooded hosts and/or vice versa. Thus, while OmpW is present in the OM of bacteria grown at 37 °C, it sharply disappears at 23 °C with the concomitant acquisition of colicin S4 resistance by the cells. ompW::lacZY fusions indicated that temperature regulation operates at the level of transcription, being ompW expression almost abolished at 23 °C as compared to 37 °C. Moreover, E. coli Δhns mutants lacking H-NS showed reductions in ompW transcription and OmpW contents at 37 °C, indicating positive modulatory roles for this nucleoid-structuring protein in ompW expression. Also, ΔhnsΔstpA double mutants simultaneously lacking H-NS and its paralog StpA showed more severe reductions in ompW expression at 37 °C, resulting in the complete loss of OmpW. The overall results indicate that OmpW contents in E. coli are regulated by both temperature and H-NS and reinforce OmpW functions in bacterial adaptation to warm-blooded hosts.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/metabolismo , Fusão Gênica Artificial , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Escherichia coli K12/efeitos da radiação , Proteínas de Fímbrias/genética , Deleção de Genes , Genes Reporter , Chaperonas Moleculares/genética , Temperatura , Transcrição Gênica , beta-Galactosidase/análise , beta-Galactosidase/genética
19.
Antimicrob Agents Chemother ; 58(3): 1816-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24395220

RESUMO

The complete sequence of the carbapenem-resistance-conferring conjugative plasmid pLD209 from a Pseudomonas putida clinical strain is presented. pLD209 is formed by 3 well-defined regions: an adaptability module encompassing a Tn402-like class 1 integron of clinical origin containing blaVIM-2 and aacA4 gene cassettes, partitioning and transfer modules, and a replication module derived from plasmids of environmental bacteria. pLD209 is thus a mosaic of modules originating in both the clinical and environmental (nonclinical) microbiota.


Assuntos
Carbapenêmicos/farmacologia , Pseudomonas putida/genética , Fatores R/genética , Sequência de Bases , Conjugação Genética/genética , Genes Bacterianos/genética , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Resistência beta-Lactâmica/genética
20.
Antimicrob Agents Chemother ; 58(1): 205-11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24145538

RESUMO

Metallo-ß-lactamases (MBLs) are Zn(2+)-containing secretory enzymes of clinical relevance, whose final folding and metal ion assembly steps in Gram-negative bacteria occur after secretion of the apo form to the periplasmic space. In the search of periplasmic factors assisting MBL biogenesis, we found that dacD null (ΔdacD) mutants of Salmonella enterica and Escherichia coli expressing the pre-GOB-18 MBL gene from plasmids showed significantly reduced resistance to cefotaxime and concomitant lower accumulation of GOB-18 in the periplasm. This reduced accumulation of GOB-18 resulted from increased accessibility to proteolytic attack in the periplasm, suggesting that the lack of DacD negatively affects the stability of secreted apo MBL forms. Moreover, ΔdacD mutants of S. enterica and E. coli showed an altered ability to develop biofilm growth. DacD is a widely distributed low-molecular-mass (LMM) penicillin binding protein (PBP6b) endowed with low dd-carboxypeptidase activity whose functions are still obscure. Our results indicate roles for DacD in assisting biogenesis of particular secretory macromolecules in Gram-negative bacteria and represent to our knowledge the first reported phenotypes for bacterial mutants lacking this LMM PBP.


Assuntos
Escherichia coli/enzimologia , Proteínas de Ligação às Penicilinas/metabolismo , Salmonella enterica/enzimologia , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Peso Molecular , Proteínas de Ligação às Penicilinas/genética , Salmonella enterica/metabolismo , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...